教学内容:练习六第8——11题。

教学目标:复习长正方体表面积计算,应用这些知识解决生活问题。

教学重点:表面积的计算。

教学难点:表面积知识在实际中的应用。

教学用具:正方体木块27个。

教学过程:

一、复习检查:

1、长正方体的特征是什么?

2、什么是长正方体的表面积?怎样计算表面积?

二、基本练习:

1、正方体的棱长是8分米,这个正方体的棱长之和是()分米,表面积是()。

2、一个长方体长2米,宽4分米,高4厘米,这个长方体棱长之和是()分米,表面积是(

)平方分米。

3、一个长方体的纸包装箱,长30厘米,宽和高都是20厘米。做10个这样的包装箱,需要纸板多少平方厘米?合多少平方分米?

你想怎样做这道题?(先计算出一个长方体的表面积,再求出10个的表面积,最后要换算单位。)独立做。

师:计算长正方体的表面积一般需要计算六个面的总面积,但在实际生产和生活中,常常只需要计算某几个面的面积之和。解答这类问题时必须根据具体情况进行分析,首先确定需要计算哪几个面的面积,其中有哪几个面是相等的,再决定计算方法。

三、解决实际问题:(先回答求哪几个面,然后只列式不计算。)

1、一座办公楼的门厅有4跟同样的长方体的水泥柱,长和宽都是4分米,柱高4米。在每根柱子的四壁刷上油漆,刷油漆的面积一共有多少平方分米?(计算出四个面的总面积)

2、一个游泳池,长50米,宽40米,平均深1.5米.在池底和四壁抹上一层水泥,如果每平方米用水泥4.5千克,共需要水泥多少千克?(先求五个面的面积和,再求水泥的重量。)

3、一个长方体的大衣柜,长0.9米,宽0.5米,高1.8米,在它的正面和左右两面刷油漆,刷油漆的面积至少是多少平方米?(三个面的面积)

四、指导练习:

1、练习六第10题。

如何把这个长方体木块分成两个棱长为4厘米的正方体?

请同学们分别计算出长方体和2个正方体的表面积,再比较截前和截后的表面积,看有什么变化?

师:截完后,增加两个面,所以2个正方体的表面积和大于原来的长方体。增加的每个面面积都与左(或右)侧面的面积相同,因此增加的表面积就是4*4*2=32(平方厘米)。

2、练习六第9题。

使学生明确:在计算组合图形的表面积时,两个图形重叠部分的面积不能算在表面积里。

3、练习六第11题。

通过引导学生观察得出:三面涂色的小正方体就是大正方体8个角的小正方体,共有8个;两面涂色的小正方体有12个;一面涂色的小正方体有6个,即大正方体6个面最中间的小正方体;没有涂到颜色的小正方体只有中间层的中间1个。

五、全课小结:通过今天的练习,你有收获吗?

五、作业:P37第8、9题。

教学反思:

重结果更重方法

表面涂漆小积木块数的问题,学生通过观察可以得出正确结论,但我觉得引导学生找出解决这类问题的方法和策略才是学习数学的重要任务。因为这样,学生就能运用数学方法迅速而又有效地解决此类问题。

在教学中,我改变教材问题的呈现顺序。先找三面涂色的块数,再到两面涂色、一面涂色的块数,最后找没有涂色的正方体有几块。这样的改动是遵循学生的认知规律,由易到难。没有涂色的正方体无法直观地从立体图中观察得出,需要学生有一定的空间想象能力。改动顺序后,有的学生无法凭借空间想像得出,他们另辟蹊径,从总数中减去三面涂色、两面涂色和一面涂色的正方体数,也可以得到正确结果。

通过此题教学,我旨在引导学生发现:

1、只有位于正方体八个角上的那些小正方体是三面涂色.也就是说三面涂色的小正方体的块数就等于正方体的顶点数,有8块。

2、两面涂色的那些小正方体,位于正方体的两个面的交界处,但又不在正方体的顶点处。因此,只需要首先确定正方体的某条棱上出现两面涂色的小正方体的块数,而正方体有12条棱,然后乘12就可以求得两面涂色的小正方体的块数。

3、一个面涂色的小正方体位于正方体每个面的中心部位,既不在正方体的顶点处,也不在棱上。因此,只需要首先确定正方体的某一个面上出现的一面涂色小正方体的块数,而正方体有6个面,于是可乘得出一面涂色的小积极木块数。

4、最后用总块数—三面涂色的块数—两面涂色的块数—一面涂色的块数=不涂颜色小正方体的块数。

在此基础上,我将此题适当延伸。将数据由“27”变成“64”让学生再次尝试,果然速度及正确率都有较大提高。

所以“授人以鱼不如授人以渔”。

解题策略的多样化

教材第九题,给颁奖台涂油漆是一道综合性较强的题,需要在课堂中重点讲解。为了提高学生能力,我在此题教学之前,请学生回忆了以前学过的一道思考题。

要求学生比较两条线段哪些长?为什么?通过此题,强化转化的数学思想和平移的策略。当然,由于学生的能力参差不齐,因此解题的策略也不尽相同。

如求黄色油漆,有的学生是先分别求出三个长方体前面的面积,然后再将面积之和乘2,即(40*55+40*65+40*40)*2。空间想像能力较强,思维灵活的学生则会将图形进行变换,将三个领奖台拼成一个大长方体,这个长方体前面的面积为(40+65+55)*40,然后再将这个面的面积乘2即可得出正确结果。

又如求红色油漆,有的学生只会一部分一部分地求。列式为40*(65—10)+40*40+40*10+40*40+40*(65—40)+40*40*2。有的学生会利用平移的思想将三个长方体上面的面合成一个大长方形,它的面积为40*3*40。左右两边也利用平移思想,可以分别得到一个长方形,它们的面积和为40*65*2。所以红色部分的面积为40*3*40+40*65*2。还有的学生能够巧妙地将这些红色部分在头脑中形成一幅完整的平面展开图。这个展开后的长方形宽是40厘米,长是40×4+25+10+55,那么红色部分油漆的面积可以列式为(40×4+25+10+55)×40。

由此可见,思维能力制约着学生的解题策略。在教学中,教师应努力促成解题方法的多样化,尤其要提倡和鼓励学生采用有创见的,自己喜欢的解题方法来解决问题,使学生的思维方式由线性思维向非线性思维的多元化方向发展,增强学生策略性知识。

作业中引导学生区分:在题目条件中没有明确指明某一面不计算面积时,如果要求粉刷教室就求5个面,下面不刷;而给房间贴壁纸应求4个面,上下2个面不贴。请问:这样界定合适哪?