本讲介绍用假设法解逻辑问题。

例1四个小朋友宝宝、星星、强强和乐乐在院子里踢足球,一阵响声,惊动了正在读书的陆老师,陆老师跑出来查看,发现一块窗户玻璃被打破了。陆老师问:“是谁打破了玻璃?”

宝宝说:“是星星无意打破的。”

星星说:“是乐乐打破的。”

乐乐说:“星星说谎。”

强强说:“反正不是我打破的。”

如果只有一个孩子说了实话,那么这个孩子是谁?是谁打破了玻璃?

分析与解:因为星星和乐乐说的正好相反,所以必是一对一错,我们可以逐一假设检验。

假设星星说得对,即玻璃窗是乐乐打破的,那么强强也说对了,这与“只有一个孩子说了实话”矛盾,所以星星说错了。

假设乐乐说对了,按题意其他孩子就都说错了。由强强说错了,推知玻璃是强强打破的。宝宝、星星确实都说错了。符合题意。

所以是强强打破了玻璃。

由例1看出,用假设法解逻辑问题,就是根据题目的几种可能情况,逐一假设。如果推出矛盾,那么假设不成立;如果推不出矛盾,那么符合题意,假设成立。

例2甲、乙、丙、丁四人同时参加全国小学数学夏令营。赛前甲、乙、丙分别做了预测。

甲说:“丙第1名,我第3名。”

乙说:“我第1名,丁第4名。”

丙说:“丁第2名,我第3名。”

成绩揭晓后,发现他们每人只说对了一半,你能说出他们的名次吗?

分析与解:我们以“他们每人只说对了一半”作为前提,进行逻辑推理。

假设甲说的第一句话“丙第1名”是对的,第二句话“我第3名”是错的。由此推知乙说的“我第1名”是错的,“丁第4名”是对的;丙说的“丁第2名”是错的,“丙第3名”是对的。这与假设“丙第1名是对的”矛盾,所以假设不成立。

再假设甲的第二句“我第3名”是对的,那么丙说的第二句“我第3名”是错的,从而丙说的第一句话“丁第2名”是对的;由此推出乙说的“丁第4名”是错的,“我第1名”是对的。至此可以排出名次顺序:乙第1名、丁第2名、甲第3名、丙第4名。

例3甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地。

甲说:“我和乙都住在北京,丙住在天津。”

乙说:“我和丁都住在上海,丙住在天津。”

丙说:“我和甲都不住在北京,何伟住在南京。”

丁说:“甲和乙都住在北京,我住在广州。”

假定他们每个人都说了两句真话,一句假话。问:不在场的何伟住在哪儿?

分析与解:因为甲、乙都说“丙住在天津,”我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。

下一页
阅读全文